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SUMMARY

The current scope, recent progress, and plans for research and development of
computational methods for unsteady aerodynamics at the NASA Langley Research Center are
reviewed. Both integral-equation and finite-difference methods for inviscid and
viscous flows are discussed. Although the great bulk of the effort has focused on
finite-difference solution of the transonic small-perturbation equation, the
integral-equation program is given primary emphasis here because it is less well known.

INTRODUCTION

Progress in the development of computational methods for steady and unsteady
aerodynamics has perennially paced advancements in aeroelastic ana]ys1s and design
capabilities. These capabilities, in turn, are of growing importance in the analysis
and design of high-performance aircraft as well as other types of flight vehicles.
Consequently, considerable effort has been directed toward the development of
appropriate unsteady-aerodynamic methodology in the NATO countries and elsewhere. This
paper reviews the contributions to those efforts at the NASA Langley Research Center.
Specifically, the current scope, recent progress, and plans for research and
development of both integral-equation and finite-difference methods for inviscid and
viscous flows are discussed, and example applications are shown. Although the great
bulk of the effort in recent years has focused on finite-difference solution of the
transonic small-perturbation equation, the integral-equation program is given primary
emphasis here because it is less well known.

INTEGRAL-EQUATION METHODS

The Langley integral-equations program is directed toward general, accurate, efficient,
and unified treatment of flows around vehicles having arbitrary shapes, motions, and
deformations {(including contro) motions) at subsonic, transonic, and supersonic speeds
up to high angles of attack. Special attention is given to real-world design and
operating conditions (e.g., Mach number, angle of attack, maneuver) as well as to
efficient computation for both design and analysis applications. As will be brought
out in the subsequent discussion, the integral-equation approach is well syited for
these purposes because flow complexities such as viscous effects or transonic flow need
tn bhe addrecced anly in the flow regionc whare they actually occur, and there is no
requirement for patching and match1ng flow domains or reg1ona1 solutions. Moreover,
for design applications repetitive and nonrepetitive portions of the computations are
readily separable, and the required sensitivities of aerodynamic parameters to
variations in aircraft geometry can be readily calculated. Although the
integral-equations research program has been given only limited and intermittent
support for the last several years, it has nevertheless produced some significant
results.

Following a long-range plan established a number of years ago {(fig. 1), initial efforts
addressed the development of surface-panel methods for subsonic (refs. 1 to 5) and
supersonic (refs. 1, 2, 6, 7) linearized potential flow. Current activities include
nonlinear methods implementing the full-potential equation for high-subsonic/transonic/
low-supersonic speeds (ref. 8). Although the initial high-subsonic/transonic
proof-of-concept codes (refs. 9 to 11) implemented the small-perturbation potential
equation, there is no particular benefit in refining codes for small-perturbation
conditions or two-diminsional flow as stepping-stones toward more realistic

conditions. Consequently, these items have been deleted from the original plan (fig.
1). Some computations for two-dimensional flow are made in order to conserve computer
resources, however.



Another change from the original plan {(fig. 1) shows that the Euler equations are not
addressed explicitly in this program. Modification of the full-potential equation to
account for entropy changes across shock waves (e.g., as in ref. 12} should greatly
expand the usefulness of potential-flow solutions well into the range of flow
conditions that would otherwise require Euler solutions. Consequently, for present
purposes we go directly from the modified full-potential method to the Navier-Stokes
equations which are being addressed by use of the classical Helmholtz
scalar/vector-potential decomposition (refs. 13 to 15). Euler solutions may, of
course, be obtained from Navier-Stokes methods with zero viscosity. We are
specifically concerned with several types of viscous influences: Thin wakes separating
from lifting-surface edges are well represented by inviscid-flow singularities {vortex
sheets). Other viscous influences require solution of Navier-Stokes equations or
equivalent. These influences include boundary-layer effects, especially on deflected
and/or deflecting control surfaces, shock/boundary-layer interaction, and large areas
of flow separation in general. Specifics of these problem areas are addressed in the
subsequent sections of this paper.

The time-dependent full-potential partial differential equation
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is the governing equation for most of the work described herein. Application of the
generalized Green's-function method to this equation yields an equivalent integral

equation for the velocity potential ¢ at any point P in the flow or on the surface of a
body in the flow at any time t (ref. 1).
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where ¢ is the perturbation velocity potential, G is the Green's function, F represents
all the nonlinear terms, a, is the freestream speed of sound, U, is the freestream
speed, x is the coordinate in the freestream direction, S(x,y,z,t) = 0 defines the body
surface, and
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The exact boundary condition on the body surface is

DS _
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The time integration with respect to t; in equation (2) is made trivial by choice of
a subsonic or supersonic source pulse as the Green's function.

An important point here is that only the nonlinear terms need to be integrated over a
fluid volume. The linear terms are integrated only over the surface of the body and
its wake. Note also that the Green's function is a function of freestream Mach number,
not local Mach number. Equations (2) and (3) have been formulated and computationally
implemented in a moving frame of reference so that they are applicable to problems such
as helicopter rotors and maneuvering aircraft as well as aircraft in uniform motion
{refs. 16 to 19).

Linearized Theory

If perturbations from freestream velocity are small, and Mach number is not near one
nor too high in the supersonic range, the non-linear terms are negligible, and the
volume integral can be igncred. The remaining surface integral of the linear terms is
discretized by surface paneling (ref. 2) (e.g., arbitrary twisted quadrilateral panels
as in refs. 3 and 4). The unsteady-flow solution can then be obtained directly by
integration in time domain, or a time solution by Laplace transform (refs. 2 to 4)
converts to a complex-frequency domain formulation which is generally more efficient
for use in solving linear aeroelastic problems.

The velocity potential on the paneled surface is then found in terms of the normalwash
distribution which, in general, is known from the input shape, orientation,motion, and
deformation.

[th] {zh} = [2jh] {?h} (4)

where 3, is the Laplace transform of the perturbation velocity potential, and §y
is the Laplace transform of the normalwash
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8jn is Kronecker delta, s is the Laplace transform variable {complex frequency),
BihsCinsDin>FijnsGjn are integrals over surface panels, 0jp,%in are lag
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functions, and Syp= + 1 for panels adjacent to a trailing edge on upper or lower
surface of the body and is zero otherwise. Surface pressures are obtained from the
potential by use of Bernoulli's equation.

Several features of equations (4) to (6) are significant. First, the elements of the Y
and Z influence matrices are independent of the normalwash and hence independent of the
mode of motion or deflection. Moreover, these matrix elements are simple functions of
the complex frequency s so that the cost of changing frequency or calculating for
multiple frequencies is small. The influence integrals B, C, and D represent integrals
of source, doublet, and “"ratelet" distributions over each body-surface panel, and
integrals F and G are the corresponding doublet and "ratelet" integrals for wake
panels. For a given paneling geometry, all of these integrals are functions only of
Mach number. 1If a problem (e.g., dynamic response or flutter) involves multiple modes
of normalwash, the normalwash vector in the equation becomes a matrix of modal columns,
and the potential distributions for all the modes can be found in a single solution.
Similarly, solutions for additional modes or revised modes (as in a structural-design
optimization problem) can be obtained without recalculating the Y and Z matrices. For
use in design processes, this formulation also appears to provide a general and very
efficient means for evaluating sensitivities, i.e., changes in aerodynamic properties
caused by changes in external shape. Demonstration calculations have been initiated.

The generality and versatility of this approach is indicated by its use by Rockwell
International for flutter analysis of the space shuttle (fig.2) in the mid 1970's.
Nearly 800 panels were used on the orbiter, and up to 60 modes of motion were used in
both symmetric and antisymmetric flutter analyses. Subsequently, the external tank and
solid rocket boosters were added, and the calculations were repeated for the entire
launch configuration.

For development purposes equations (4) to (6) have been implemented in a prototype code
called SOUSSA Pl.1 (Steady, Oscillatory, and Unsteady Subsonic and Supersonic
Aerodynamics - Version 1.1) Trefs. 3 and 4) which is applicable to Vehicles having
arbitrary shapes, motions, and deformations in subsonic flow only. The Pl.1 code
employs zeroth-order (constant-potential) panels along with the data base and
data-handling utilities of the SPAR finite-element structural-analysis program. These
were incorporated because SQUSSA P1.1 originally was intended for the calculation of
steady-state structural loads and unsteady aerodynamics for flutter and gust-response
calculation in multidisciplinary structural-optimization computations employing the
SPAR structural analysis. The SPAR components, however, are unnecessary for
stand-alone use. More efficient data handling methods for stand-alone operation are
available.

Subsequent to the completion of SQUSSA Pl.l1 several significant improvements have been
incorporated, and others have been defined (ref. 5). Among the latter are
implementation of higher-order panels, elimination of the SPAR components,
transposition and revision of the solution algorithm to substantially reduce
input/output operations, and improved implementation of the trailing-edge (Kutta) flow
condition.

Some program improvements already incorporated in the SOUSSA code include the
development of an “"out-of-core" solver to permit the use of paneling schemes that lead
to coefficient matrices too large to fit in the memory of modest-size computers; the
replacement of the paneled wake by an analytical wake (reducing the cost of a typical
run by about one-half) but retaining an option to use paneled wakes if needed (e.g.,
wnen there 1s another 1iTting surface in ine wake}; and repiacing ihe rectangulai
integration of pressures by a Gaussian guadrature scheme to improve the accuracy of the
calculated generalized aerodynamic forces. These improvements are incorporated in a
replacement for the SOUSSA code (called UTSA) which is under development at a low level
of effort.

Figure 3 (reproduced from ref. 5) compares a chordwise distribution of pressure
coefficient C, calculated by the SQUSSA surface-panel method with pressures measured

on a clipped delta wing oscillating in pitch (ref. 20). The wing had a
six-percent-thick circular-arc airfoil. The agreement is good and is representative of
results obtained with this code. Figure 4 compares calculated and measured steady
upper-surface pressures at two chordwise locations x on an outboard station (y=0.85) on
the same clipped delta wing. Two points are to be made: First, in the range of angle
of attack a (-2 deg to +2 deg) where pressure varies linearly, the agreement is
excellent. Second, for this sharp-edge wing, the influence of the leading-edge vortex
is substantial and begins at a low angle of attack. The latter behavior emphasizes the
importance of our treatment of vortex-type flow separation to be discussed below. A
phenomenological description of the relation between the vortex development and the
pressure variation shown is given in ref. 21 (from which figure 4 was taken) and in
Appendix A of ref.

In addition to the subsonic capability of the SOUSSA program, a supersonic
proof-of-concept surface-panel code has been written to implement linear-theory



algorithms developed in refs. 6 and 7. The code employs first-order panels and, like
SOUSSA, is applicable to vehicles having arbitrary shapes, motions, and deformations.
Validation and application of the code have begun.

The only significant difference between subsonic and supersonic formulations is in the
expressions for the influence integrals B,C,D, F,G in equations (5) and (6) (see, e.g.,
ref.2). Othner portions of the computations, such as paneling geometry and solution
alorithms are common to both. Consequently, it is possible that the computational
capability for supersonic flow derived from this proof-of-concept code will
subsequently be incorporated into the subsonic code UTSA.

The status and near-term plans for linear-theory surface-panel methods, which are
applicable to vehicles having arbitrary shapes, motions, and deformations, may be
summarized as follows: As planned the SOUSSA program will be superseded by an improved
program UTSA which incorporates first-order panels as well as other improvements
indicated by earier work with SQUSSA. Ultimately, the code may include both subsonic
and supersonic capabilities. Frequency-domain computations are most efficient for
implementing linear theory, but a time-domain version is also retained for evaluation
of the surface integral in the noniinear methods described next. Specific activities
include configuring the UTSA code for efficient use in interdisciplinary design
processes, incorporating special elements to improve accuracy and efficiency near
normalwash discontinuities (e.g., at control surfaces), completing the initial
demonstration of the efficient computation of sensitivities of aerodynamic pressures
and loads to variations in planform, and general check out and validation.

Nonlinear Theory

When the flow approaches transonic conditions and/or flow perturbations (e.g., angle of
attack) become large, the nonlinear terms represented by F in equation (2) are no
longer negligible, and the volume integral must be evaluated in combination with the
surface-panel evaluation of the linear terms {refs. 9 to 11). For nonlinear problems
jt is important to note (1) that the Green's function depends on freestream Mach
number, not local Mach number, and (2) that the integrand of the volume integral
diminishes rapidly in magnitude with increasing distance from the body and its wake.

For application to nonlinear problems the integral-equation method has several features
which make it particularly attractive for general, efficient computational
implementation: (1) Evaluation of an integral is required rather than the numerical
solution of a partial differential equation, which is a more sensitive process. (2)
The volume integral need be treated only in the limited region of flow in which
nonlinear terms are of significant magnitude rather than over an entire computational
domain. In fact, as the integration proceeds away from the body, it is terminated when
the integrand falls below a preselected threshhold value. (3) Required accuracy can be
attained with relatively few computational grid points in the fluid (computational
domain of the volume integral)}. (4) The code is numerically stable even when
moderate-to-large time steps are employed. (5) Correct far-field boundary conditions
are automatically imposed. This condition is particularly important for unsteady

flow. Linear-theory behavior in the far field is inherent in the integral-equation
solution. (6) When viscous flows are treated by the scalar/vector-potential
decomposition {to be discussed below), interfacing (patching and matching) of regional
sofutions (e.g., inner viscous solution and outer inviscid solution) is not required.
(7) Even for solution of the full-potential equation, there is no requirement for
generating, imbedding, or interpolating surface-fitted computational grids.

In this section small-perturbation transonic attached flow will be considered first
followed by large-perturbation subsonic and transonic flow conditions involving
vortex-type flow separation in the form of thin wakes emanating from lifting-surface
edges and finally flow conditions involving significant viscous effects which require
solution of Navier-Stokes equations for attached or separated flow for which the
scalar/vector-potential method is employed.

Small-Perturbation Transonic Flow: For proof-of-concept demonstration of transonic
capability, only the small-perturbation terms were retained in the volume integral of
equation (2), and the resulting time-domain computer code (ref. 11) was called SUSAN
(Steady and Unsteady Subsonic Aerodynamics-Nonlinear). Figure 5 shows chordwise
pressure distribution near the root of a rectangular wing as calculated by the SUSAN
code and by a transonic small-perturbation finite-difference code. The shock is
captured, and the agreement is quite good even though only a few elements were used to
evaluate the volume integral, and the domain of integration extended only one chord
length from the wing perimeter. Good agreement with measured pressures {(from ref. 22)
is shown in figure 6 for a sharp-edge wing under conditions involving supercritical
flow over much of the chord.

Evolution of the lifting pressure AC, on a wing oscillating slowly in pitch about the
leading edge is shown in figure 7 at three times during a cycle of motion. Although
only ten computational elements along the wing chord were used to evaluate the volume
integral of the nonlinear terms, the build-up of 1ift and the appearance of a shockwave
are clearly indicated. In this particular figure, the symbols shown are used only to
distinguish the curves and do not indicate computational points.




The formulation described here and its implementation in the SUSAN code demonstrated
the merits of the integral-equation method for transonic flow. However, no further
development of the small-perturbation approximation is planned.

Subsonic/Transonic Flow with Vortex Separation: A1l of the preceding involved
calcuTation of the velocity potential. For solving nonlinear problems, however, there
are advantages in calculating velocities directly, especially when large velocity
variations occur, when shocks are present, when thin-wake (vortex-like) flow separation
from wing leading or side edges occurs (fig. 8), or even when trailing-edge wake
deformations are significant. Taking the gradient of the integral equation for the
potential (equation (2)) or alternatively applying the Green's-function method to the
full-potential equation in the form (for steady state)

-1

Ve = = VorUs = Q (7}
gives (ref. 8)
x.¥,2) = E_* o [fpooy —xT ds + & Juake T3 ds

1 Q¢ :
torm Hlvol, g2 BRYY

where p is the fluid density, o is the vorticity vector, R is the vector from "sending"
oint to "“receiving" point, Ep is a unit vector in the R direction, and
o 15 @ unit vector in freestream direction.

Equation (8) is an expression for the velocity field V as the sum of four components:
(1) freestream, (2) a surface integral which gives the velocity induced by the flow
singularities representing the solid body, (3) a surface integral which gives the
velocity induced by the vorticity representing the thin wake, and (4) a volume integral
representing the compressibility terms (right-hand side of equation (7)). The
integrand of this volume integral decreases more rapidly than the square of the
distance from the body or vortex surface, so the domain of integration can be
relatively small. The integrands in the three integrals are not independent, and
solution is by iteration to satisfy the boundary conditions on the body and to deform
the free vortex sheets into a force-free shape (ref. 8). Note that the form of the
integrand shown in the body integral indicates the use of a vorticity distribution to
represent a thin wing in some proof-of-concept calculations. One of the major
generalizations of this method, to be initiated, consists of replacing this body
integral with the UTSA surface-panel formulation so that transonic flow over bodies of
arbitary shape, including vortex-type separation, can be calculated. Other planned
improvements include (1) replacing the vortex-lattice model used in the wake integral
for proof-of-concept calculations with the hybrid-vortex formulation (refs. 23 and
24) in which second-order distributed-vorticity panels are used to compute near-field
influence, reducing to zeroth-order (discrete-vorticity) §1ements for far-field
influence, (2) shifting the linear compressibility term M¢¢,x from volume integral

to surface integral by solving

VZO - M2¢XX =Q - M2¢xx = Qponlin (9)

instead of equation (7), thereby significantly reducing the region over which the
volume integral needs to be evaluated, (3) replacing constant source strength with
linearly varying source strength in the volume elements and introduing a threshold
cutoff value for the integrand of the volume integral to terminate integration when the
integrand diminishes to nealigible magnitude. (4) accelerating convergence of the
solution by possible use of shock fitting (ref. 8), (5) accounting for entropy changes
across shockwaves (see, e.g., ref. 12). Code development for unsteady flow is in
progress. Research on suitable configuration of these codes for efficient use in
computer-aided interdisciplinary design will be a continuing activity.

Completion of the improvements listed above should provide a powerful tool for
calculating transonic and/or free-vortex flows around arbitrary aircraft configurations
with sharp leading edges or with specified separation line locations. Establishing the
separation line on a vibrating wing, however, is a tough viscous-flow probiem, but may
be amenable to treatment by the scalar-vector potential method to be discusssed below.
The importance of expediting this activity should be underscored. The ability to
calculate accurately the complicated transonic vortical flows around highly swept wings
and complete aircraft at high angles of attack is a key problem for the future
development of highly maneuverable fighter aircraft and is already needed to improve
the assessment and understanding of steady and transient flight loads and flutter
problems of current combat aircraft. It should be especially noted that vortex-type
flow separations produce typically detrimental effects on structural loads and flutter.

Figure 9 shows the calculated velocity field and shape of the free-vortex surface in a
crossflow plane slightly downstream of the trailing edge of a delta wing with vortex
sheets representing thin wakes emanating from leading and trailing edges as in figure
8. The volume integral (equation (8)) has not been included for this incompressible-
flow calculation. The results compare quite favorably with the low-Mach-number



experiments of Hummel (ref. 25) even though relatively few vortex elements were used in
this exploratory calculation. The leading-edge vortex core is clearly defined as is
the incipient deformation of the trailing-edge vortex sheet into a trailing-edge core
with rotation opposite to that of the leading-edge core. The corresponding spanwise
distributions of 1ifting pressure AC, are shown in figure 10 for crossflow planes at
0.7 and 0.9 of the root chord aft of the wing apex. Agreement with measured values is
very good.

Inclusion of the volume integral {equation (8)) permits calculation of transonic flow.
Figure 11 shows the spanwise distribution of upper-surface pressure Cy, and the flow
field, including a captured shock, in a crossflow plane at 0.8 of the root chord aft of
the apex of a delta wing (ref. 8). 1In this exploratory calculation the vortex sheet
was not allowed to roll up enough to exert its full inductive effect on the wing
surface before the vorticity was transferred into the vortex core. 1If an additional
quarter turn of rollup were allowed, the pressure peak would be slightly higher and a
little farther outboard, resulting in even better agreement with experiment. 1In
contrast, the pressure peak from the Euler solution is considerably weaker and farther
outboard than the experimental peak because of spatial and numerical diffusion in the
Euler calculation.

Structural design loads do not occur at small-perturbation conditions but at limit
load-factor conditions such as high angle of attack. Aeroelastic deformations are
important. Wind-tunnel results may be of questionable accuracy because of large wall
effects. The important influence of large perturbation conditions and free-vortex
flows on structural design loads is typically detrimental, as is illustrated by the
calculations shown in figure 12 (from ref. 26). Even if the linear and nonlinear
spanwise load distributions shown were compared on the basis of same total normal force
(same area under the curves), it is evident that the effect of the wing-tip vortex is
to shift the load outboard and hence increase wing bending movements.

Linearized aerodynamic theory indicates that there should be no effect of angle of
attack on flutter dynamic pressure. However, a detrimental effect typically does occur
with increasing angle of attack (see, e.g., refs. 27 and 28). If adequate flutter
margins are to be maintained when angle of attack is not near zero, the degradation
must be predictable. Wind-tunnel testing of stiffness-scaled flutter models is not the
answer because they are typically too weak to sustain more than very small static
loads. Figure 13 shows experimental variation of flutter dynamic pressure with angle
of attack for a stiff wing that was spring supported (ref. 29). The initial decline in
flutter dynamic pressure between 0 and 7 deg is attributed to the effect of the tip
vortex. Confirming calculations by methods just described are in early stages. The
drastic decline beyond 7 deg is probably caused by flow separation progressing forward
from the trailing edge. Prediction of that behavior will require solutions of
Navier-Stokes equations as discussed below.

Summarizing the status of integral-equation methods for vortex-type (thin wake) flow
separation: The hybrid-vortex method for low-Mach-number steady flow (refs. 23 and 24)
is complete. Computations based on equation (8) for steady transonic flow with
vortex-type separation and shockwaves have been demonstrated (ref. 8), and the
corresponding unsteady code development is in progress. Major generalizations and
improvements in efficiency are underway. Further developments for transonic flow, with
or without vortex-type flow separation, will be based on equation (8).

Scalar/Vector-Potential Method: When viscous influences (other than thin wakes from

Tifting-surface edges) are important -- for example, boundary-layer effects on
control-surface forces, shock/boundary-layer interaction, or flow separation from
surfaces (fig. 1) -- solution of Navier-Stokes equations in some form is required. The

approach taken here is a scalar/vector-potential (SVP) decomposition of the velocity
field by use of the classical Helmholtz representation of a vector field as the sum of
an irrotational part and a solenoidal part (refs. 13 to 15). Thus

V= grad ¢ + curl K (10)

where ¢ is again the scalar potential which_is evaluated by the methods already
described herein, and the vector potential A is related to the vorticity w by

vk = -G = - curl ¥ (11)

The vorticity, in turn, is governed by the vorticity-dynamics equation
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which is obtained by taking the curl of Navier-Stokes equation for general,
three-dimensional, unsteady, compressible, viscous, heat-conducting flow (ref. 13) to
which the present formulation is fully equivalent. 1In equation (12), T is temperature,
S is entropy, and T is stress tensor.

The formulation in equations (10) to (12) appears to be a computationally attractive
alternative to direct solution of the Navier-Stokes equations in primitive variables.
Methods of this type have been used for a long time for viscous incompressible flow,
but they have not proved to be readily generalizable to compressible flow. The present
formulation is quite general and is directly applicable to compressible flow. Since
the outer region of the flow about an aircraft is essentially irrotational, an
integral-equation implementation appears to be an especially attractive method of
solution. The initial proof-of-concept code for two-dimensional incompressible flow
has been used to calculate boundary layers on a flat plate (fig. 14), flow over an
airfoil, and separated flow around a rectangle {(fig. 15) -- all with good results
(refs. 14 and 15). 1In particular, the calculation of flow around a rectangle {fig. 15)
demonstrates the ability to calculate flows involving large regions of separation. The
resulting velocity field shown in the figure illustrates that flow separation is
predicted very satisfactorily even though separation was not imposed by any artificial
means within the algorithm. These results are in excellent agreement with the
finite-difference results of ref. 31. Application to a circulation-control airfoil is
being initiated. For applications to turbulent flows this method, of course, requires
a good turbulence model just as any other method does. In addition to its
computational use, the SVP formulation has also generated considerable insight into the
relations between surface boundary conditions, viscosity, vorticity and its diffusion
(refs. 14 and 15).

Current activities are extending the proof-of-concept code to three dimensions and to
compressible flow. The types of applications planned include viscous flow over 1ifting
surfaces with and without control-surface deflection, 1ifting surfaces with flow
separation from edges in compressible flow, and 1ifting surfaces with separated flow
following a step change in angle of attack.

Summary of Integral-Equation Activities

The activities described here and the computational capabilities summarized in table I
indicate that completion of this work will provide efficient and unified treatment of
flow over vehicles having arbitrary shapes, motions, and deformations at subsonic,
transonic, and supersonic speeds up to high angles of attack. Moreover, the
computational forms of the equations and the computational capabilities that are
emerging appear to be well suited for repetitive use in design applications as well as
for stand-alone use. As pointed out previously, the UTSA surface-panel program for
attached flow may contain both subsonic and supersonic modules in a single program.
Flow complexities, such as transonic nonlinearities, thin wakes, or viscous influences,
are addressed only if and where they occur. Thus, if the volume-integral module is
included with UTSA, the program implements the full-potential equation for transonic
nonlinear attached flow. With modification for shock-generated entropy change, the
program can apply also to flows with shocks of finite strength, including supersonic
Mach numbers above the linear range, as long as shock-generated vorticity is of minor
importance. 1If the hybrid-vortex module representing the free vortex sheets is also
included, the code treats transonic flow with vortex-type separation. Finally,
combination of the vector potential with these scalar-potential methods (SVP
formulation) permits the formal equivalent of Navier-Stokes solutions for high angles
of attack where flow separation from surfaces may occur (for example, on advanced
fighter aircraft in combat maneuvers and in highly transient conditions) and also even
for low anglec of attack when control-curface deflectionc or deflection rates are large
enough or shock waves are strong enough to cause significant boundary-layer thickening
or separation. The latter conditions are particularly important for generating control
forces and for design of active control systems.

FINITE-DIFFERENCE METHODS

The goal of this activity is to develop finite difference methods that can be used for
aeroelastic analysis of complete aircraft. At the Langley Research Center, efforts
based on transonic small perturbation (TSP) potential theory, full potential theory,
and the Euler/Navier-Stokes equations are underway.

Transonic Smalli-Perturbation Equation

At the TSP level, development has progressed on two fronts--{(1) extending the
capability of the XTRAN3S code (ref. 32) through extensive modification and (2)
developing a new program (ref. 33). Fig. 16 shows a sample wing/fuselage calculation
made possible by modifying XTRAN3S (ref. 34). The wing has an RAE 101 airfoil section,
37 deg leading edge sweep angle, aspect ratio (AR) of 6, and taper ratio of one-third.
The fuselage is a sting-mounted, axisymmetric body of revolution with fineness ratio
{length/maximum diameter) of 7.66. Calculations were made for a flexible wing at free
stream Mach number (M) of 0.91 and mean angle of attack (a) of 1 deg. Fig. 16 (a)
shows the wing tip deflection as a function of time, and fig. 16 (b) shows the gridding
used to represent the wing/fuselage. Figs. 16 (c) and 16 (d) show the instantaneous
Mach number contours at the maximum and minimum tip deflections, respectively. The
wing motion is the first bending mode at a reduced frequency (k) of 0.25. The contours



near the leading and trailing edges indicate local Mach numbers less than 0.85, and
over the wing chord and fuselage, the contours indicate Mach numbers greater than 0.95.

A new TSP code, CAP-TSD (Computational Aeroelasticity Program-Transonic Small
Disturbance) (ref. 33) has been developed at Langley. It solves the three-dimensional
T3-D) TSP equation using an approximate factorization (AF) algorithm. The code is
significantly more efficient than methods that use an alternating-direction-implicit
(ADI) solution algorithm and can be used for aercelastic analysis of complete
aircraft. Fig. 17 shows comparisons of CAP-TSD (AF) and XTRAN3S (ADI) calculations
with experimental data for a rigid F-5 wing pitching about zero mean angle

at k = 0.137 (ref. 35). Pressures are shown at the 51 percent span station (n).
Upper surface pressures are shown in fig. 17 (a), and lower surface pressures are
shown in fig. 17 (b). Both sets of calculations show good agreement with the measured
data and are nearly identical to each other. The primary difference is that the

AF solution requires only ten percent of the computer resources used in the ADI
calculation. CAP-TSD has been used to compute steady flow past a wing/fuselage/tail
model that was tested at DFVLR. In the test, M = 0.2, a = 0.15 deg. The wing is
rectangular with RAE 101 airfoil sections (9 percent thickness ratio) and a full-span
aspect ratio of 6. The horizontal tail is rectangular with RAE 101 airfoil sections
(12 percent thicknessratio) and full-span aspect ratio of 3. The fuselage is an
axisymmetric body of revolution with fineness ratio of 9.75. The

mathematical representation of the model is shown in fig. 18 (a). Comparisons of
computed and measured pressures on the wing and tail are shown in fig. 18 (b). Fig. 18
(c) shows comparisons of computed and measured pressures on the fuselage. In all
cases, the computations and experiments are in good agreement.

Potential flow theory has been shown to give highly erroneous and even multivalued
results when shock waves are in the flow field (refs. 36, 37). This is because
shock-generated entropy is not modeled in potential flow formulations. A method for
modeling nonisentropic effects in 2-D TSP theory was developed by Fuglisang and Williams
(ref. 12) and extended to three dimensions by Gibbons et al. (ref. 38). The
nonisentropic formulation was implemented by modifying the streamwise flux in the TSP
equation to account for entropy jumps across shock waves. This alleviates the
phenomena of multiple solutions and highly inaccurate loading predicted by isentropic
potential methods. Fig. 19 shows an example of calculated 1ift as a function of angle
of attack for isentropic and nonisentropic formulations. An Euler calculation is
included at one deg angle of attack. Without the nonisentropic corrections, the
calculated 1ift is too lTarge. When the corrections are included, the calculated 1ift
is less and agrees with the Euler calculation at the point where such data is
available.

Full-Potential Equation

A method for modeling shock-generated entropy in the unsteady full-potential (FP)
formulation has been developed at Langley (ref. 39). The method is an extension of the
steady-flow method of Hafez and Lovell (ref. 40). Fig. 20 shows the instantaneous
pressures on an NACA 0012 airfoil oscillating in pitch about its quarter chord. 1In
this case, M = 0.755, a(t) = (0.016 + 2.51sin(kt)) deg, and k (based on semichord) =
0.0814. Fig. 20 (a) shows a comparison of the isentropic full-potential method, a TSP
method (denoted by "TSD" on the figure) (ref. 41), and experimental data (ref. 42).
Fig. 20 (b) shows isentropic and nonisentropic full potential methods, along with the
measured data. When entropy corrections are used, more accurate modeling of the shock
is obtained, and agreement with the measured data is improved.

Currently, efforts are underway to extend the full potential method to three
dimensions. The proposed method will have the capability to do aeroelastic analysis
for flows in the subsonic, transonic, and supersonic speed ranges.

Euler/Navier-Stokes Equations

Research is being conducted to develop methods for obtaining time-accurate unsteady
solutions of the Euler/Navier-Stokes equations. These methods are used to solve the
Navier-Stokes equations, with solutions of the Euler equations obtained by turning off
the viscous terms. The existing codes are used to march in time to steady state and
currently are being modified to be made time-accurate. An effort is underway to
correlate Navier-Stokes calculations with pressure data measured in the Langley
Research Center 0.3-meter Transonic Cryogenic Tunnel. Unsteady transonic pressures
were measured on a l4-percent-thick supercritical airfoil at cryogenic temperatures for
M between 0.65 and 0.74 and at Reynolds numbers based on airfoil chord (Rc) between 6
million and 35 million (ref. 43). The model is shown in fig. 21 (a). The open
symbols in fig. 21 (b) show test conditions where the effects of frequency on the
unsteady pressures were examined, and the solid symbols show where the effects of
frequency and amplitude were studied. Steady pressure distributions at Rc = 6 million
(open symbols) and at Rc = 30 million (solid symbols) are shown in fig. 21 (c). The
results of this study may be used to determine when various forms of the Navier-Stokes
equations can be used (e. g., thin-Tayer or the full equations) and may be used to
evaluate methods that couple viscous flow models with inviscid methods.

An implicit upwind code that can be used to calculate massively separated 2-D flows
(ref. 44) is available for use in the correlation study. It uses van Leer flux-vector
splitting and is first-order accurate in time and second-order accurate in space. The




method can be used for time marching to steady-state solutions, but it is not
time-accurate and cannot model unsteady flow. An example of the capability of this
code is shown in fig. 22. Even though the code is not time accurate, the example shows
the variatior in loads that can occur when marching to steady state. It shows
computation of laminar flow about a 12-percent-thick Joukowski airfoil at 53 deg angle
of attack at minimum 1ift (fig. 22 (a)), increasing 1ift (fig. 22 (b)), and maximum
1ift (fig. 22 (d)) for a Strouhal number of 0.166. The time history of the 1ift is
shown in fig. 22 (c). At minimum 1ift, a strong counterclockwise vortex has just been
shed from the trailing edge. There is a weak region of clockwise vorticity one-half
chord behind the airfoil and a strong region of clockwise vorticity, which persists
throughout the entire cycle, at the leading edge.  The flow near the upper surface is
broken into several cells of vorticity. As the 1ift increases, the trailing edge
vortex breaks away and weakens as the region of clockwise vorticity behind the airfoil
increases in strength. The vorticity near the upper surface becomes predominantly
counterclockwise. Current efforts are aimed at extending this capability to
time-accurate analysis of 2D unsteady flows.

A steady-flow Navier-Stokes method {(ref. 45) is available for analysis of 3-D wings.
The convective and pressure terms are upwind differenced, using a flux-vector splitting
method. The shear stress and heat transfer terms are centrally differenced. The
resulting algorithm is second-order accurate in space. An implicit, spatially factored
algorithm, which is fully vectorized for the Control Data Corporation VPS 32, is used
to provide efficient solutions. Efforts also are underway to extend this capability to
3D time-accurate analysis. An example of calculations made using this method is shown
in fig. 23. 1t shows the contours of the calculated total pressures on an AR = 1 delta
wing (75 deg leading-edge sweep angle) at M = 0.3 and « = 20.5 deg. Solutions were
obtained by marching in time to steady state. Primary and secondary vorticies are
evident on the upper surface. Close examination of the surface velocities indicates a
tertiary separation outboard of the secondary vortices. This type of flow field also
was observed in a related experiment (ref. 25).

Fig. 24 shows contours of measured total pressures on the same delta wing at the same
flow conditions used in the previously mentioned Navier-Stokes calculations. These
steady-flow data were measured in the Basic Aerodynamic Research Tunnel at Langley
(ref. 46) and show good agreement with the calculated data in fig. 23.

Summary of Finite-Difference Activities

Areas of current activity in the development of finite-difference methods are shown in
fig. 25. Methods based on TSP theory are being applied to configurations as complex as
complete aircraft. Unsteady full-potential methods are being developed for 3-D
configurations with the goal being to use such methods for aeroelastic analysis of
complete aircraft. Steady, time-marching Navier-Stokes methods are available for
airfoil and for isolated wings. Those methods are currently being made time-accurate.

CONCLUDING REMARKS

Some problems, progress, and plans in the development of steady and unsteady
computational aerodynamics for use in aeroelastic analysis and design have been
reviewed. The primary focus has been on applications to (1) vehicles having arbitrary
shapes, motions, and deformations, (2) appropriate design and operating conditions,
especially for transonic speeds and high angles of attack, (3) efficient computation of
aerodynamics and aeroelastic behavior for both design and analysis. Current and future
activities have been highlighted.
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Table 1.-Summary of Integrai-Equation Activities.

a Range M Range Subsonic Transonic Supersonic
Low
(attached flow) UTSA Nonlinear UTSA UTSA
w/large control deflection SVP SVP
Nonlinear
Moderate UTSA + UTSA+
(vortex separation) Hybrid vortex | Hybrid vortex
w/large control deflection SVP SVP -
Large
(separated flow) SVP SVP
w/ or w/o control deflection SVP SvP
1980 1990
| 1 1 L | l | | L |
Sub/supersonic integral eq. method for complete a/c
Linear Nonlinear
] 20aA 3D Transonic methods )

SEtpmErmEm; Full potentiol; EmEE=wms; Navier-Stokes eal |

X

Viscous flow effects H
Edge separation; B. L. effect; shock/B. L.;[Surface sep.] {
—— Deleted from original plan (] Added to original plan

Gog]: validated computational methods for evaluating steady and
unsteady loads on alrcraft having arbitrary shapes, motions, and
deformations (including control surfaces) in subsonic, transonic,
gnd supersonic flow up to high angles of attack

Justification: These methods are needed to evalugte and study
structural loads, gerodynomic coefficients, stability character-
Istics, dynamic loads, and flutter in the analysis and design of
advanced high-performance aircraft, including fighters capable
of supermanuverability

Fig. 1 - Integral-equation prbgra- in unsteady aerodynamics
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Fig. 18 - Steady flow computations for DFYLR ,
model at Mach number 0.2, a = 0.15 deg xie

(b) Isentropic amd nonisentropic vs.
experiment

Fig. 20 - unsteady préssures on an NACA 0012
airfoil at Mach nusber 0.755, (t) =
(0.016 + 2.51sin(kt)) deg, kt = 168 deg
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Fig. 21 - Study of Reynolds number effects on unsteady pressures
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Fig. 22 - Computation of two-dimensional flow separation
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Fig. 23 - Calculated total pressure contours
on a 75 deg delta wing at Mach number

0.3, «a = 20.5 deg, Reynolds number = 0.95

million
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Fig. 24 - Measured total pressure contours
on a 75 deg delta wing at Mach number 0.3,
a = 20.5 deg, Reynolds number = 1 million
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Fig. 25 - Summary of finite-difference activities
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